The weighted Lp-boundedness of product-type pseudodifferential operators
نویسندگان
چکیده
منابع مشابه
Counterexamples for Boundedness of Pseudodifferential Operators
This is the classical version of pseudodifferential operators that is used in the investigation of partial differential operators, cf. [21]. In the language of physics, the Kohn–Nirenberg correspondence and its relatives such as the Weyl correspondence are methods of quantization. In the language of engineering, they are time-varying filters. The Kohn–Nirenberg correspondence is usually analyze...
متن کاملWeighted Anisotropic Product Hardy Spaces and Boundedness of Sublinear Operators
Let A1 and A2 be expansive dilations, respectively, on R n and R. Let ~ A ≡ (A1, A2) and Ap( ~ A) be the class of product Muckenhoupt weights on R × R for p ∈ (1, ∞]. When p ∈ (1, ∞) and w ∈ Ap( ~ A), the authors characterize the weighted Lebesgue space L w (R × R) via the anisotropic Lusin-area function associated with ~ A. When p ∈ (0, 1], w ∈ A∞( ~ A), the authors introduce the weighted anis...
متن کاملPseudodifferential operators and weighted normed symbol spaces
In this work we study some general classes of pseudodifferential operators where the classes of symbols are defined in terms of phase space estimates. Résumé On étudie des classes générales d’opérateurs pseudodifférentiels dont les classes de symboles sont définis en termes d’éstimations dans l’espace de phase.
متن کاملBeals-cordes-type Characterizations of Pseudodifferential Operators
We show that, if U is the representation of SOe(n+1, 1) on L2(Sn) given by (2.11), and P is a bounded operator on L2(Sn), then P belongs to OPS0 1,0(S n) if and only if P (g) = U(g)PU(g)−1 is a C∞ function on SOe(n+1, 1) with values in the Banach space L(L2(Sn)). Introduction Let M be a compact C∞ manifold. Denote by OPS 1,0(M) the space of pseudodifferential operators on M , whose symbols in l...
متن کاملON THE Lp BOUNDEDNESS OF WAVE OPERATORS FOR TWO-DIMENSIONAL SCHRÖDINGER OPERATORS WITH THRESHOLD OBSTRUCTIONS
Let H = −∆ + V be a Schrödinger operator on L(R) with real-valued potential V , and let H0 = −∆. If V has sufficient pointwise decay, the wave operators W± = s − limt→±∞ eitHe−itH0 are known to be bounded on L(R) for all 1 < p < ∞ if zero is not an eigenvalue or resonance. We show that if there is an s-wave resonance or an eigenvalue only at zero, then the wave operators are bounded on L(R) for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1989
ISSN: 0001-8708
DOI: 10.1016/0001-8708(89)90003-0